A B为n阶方阵 B为非零阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/07 19:15:19
A B为n阶方阵 B为非零阵
设A与B皆为n阶方阵,证明,如果AB=0那么秩A=秩B

见http://zhidao.baidu.com/question/449580128.html

设A为n阶方阵,B为N×S矩阵,且r(B)=n.证明若AB=0则A=0

若AB=0,则说明B的列向量都是AX=0的解因为r(B)=n,所以AX=0至少有n个线性无关的解设解集为S,则r(S)=n-r(A)>=n即r(A)=0所以r(A)=0即A=0

线性代数证明题.设B为任一n阶方阵,A为n阶实对称矩阵,证明BтAB为对称矩阵.

(BтAB)т=(B)т(A)т(Bт)т=BтAтB=BтAB,不就是对称矩阵么?再问:思路是什么啊。为什么一开始要求BтAB的转置呢。你的证明我看懂了。再答:什么是对称矩阵?!对称矩阵不就是证明转

:设A是元素为整数的n阶方阵,则存在元素为整数的n阶方阵B,使得AB=E的充分必要条件

存在元素为整数的n阶方阵B,使得AB=E,即方阵A存在逆矩阵.一个方阵,存在逆矩阵的充分必要条件是行列式不为0

设A,B为n阶方阵,且AB=0,证明:R(A)+R(B)小于等于n

因为AB=0所以B的列向量都是AX=0的解.所以B的列向量组可以由AX=0的基础解系线性表示所以r(B)

设A,B为n阶单位方阵,I为n阶单位方阵,B及I+AB可逆,证明I+BA也可逆

因为I+AB可逆,所以(I+AB)(I+AB)^(-1)=I,推出(B^(-1)B+AB)(B^(-1)B+AB)^(-1)=I,(B^(-1)+A)BB^(-1)(B^(-1)+A)^(-1)=I也

(线性代数)设A,B为n阶方阵,证明:r(AB)>=r(A)+r(B)-n

证明:AB与n阶单位矩阵En构造分块矩阵|ABO||OEn|A分乘下面两块矩阵加到上面两块矩阵,有|ABA||0En|右边两块矩阵分乘-B加到左边两块矩阵,有|0A||-BEn|所以,r(AB)+n=

设A、B均为n阶方阵,I为n阶单位矩阵,若A+B=AB,求证AB=BA

A+B=AB,所以(A-I)(B-I)=I,说明A-I与B-I互为逆矩阵,设它们为X,Y,即A=I+X,B=I+Y,X与Y互逆,所以,AB=(I+X)(I+Y)=I+X+Y+XY=2I+X+Y,BA=

设A,B为N阶方阵,若A可逆,证明AB与BA相似

因为[A^(-1)]*AB*A=BA,所以AB与BA相似.注:A^(-1)指的是A的逆矩阵.

A.B为n阶方阵且A+B+AB=0,证明AB=BA?

A+B+AB=0(I+A)(I+B)=-I即I+A可逆,逆矩阵为-(I+B).因此(I+B)(I+A)=-I即A+B+BA=0所以AB=BA

设A和B为n阶方阵,A^2B+AB^2=E 证明A+B可逆

A^2B+AB^2=E即AAB+ABB=E所以A(A+B)B=E所以A可逆,B可逆所以A(A+B)=B^-1A+B=A^-1B^-1所以A+B可逆且(A+B)^-1=BA

线性代数 设A,B为n阶方阵,B不等于0,且AB=0,

选B因为若|A|不等于0,则A可写成一系列初等矩阵的乘积,AB相当于对B作一系列初等变换,初等变换不改变矩阵的秩,所以AB同B有相同的秩,但是,由于AB=0,所以其秩为0,而B不等于0,所以其秩至少为

设A,B为n阶方阵,且AB=A+B,试证AB=BA

由AB=A+B,有(A-E)(B-E)=AB-A-B+E=E.A-E与B-E互为逆矩阵,于是也有(B-E)(A-E)=E.展开即得BA=A+B=AB.

设A,B为n阶方阵,满足关系AB=0,则必有_____

AB=0左右取行列式得|A||B|=0所以|A|=0或|B|=0

设A、B均为n阶方阵,A可逆,且AB=0,则

由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确

一个线性代数问题.若两个n阶方阵A,B乘积为可逆矩阵.那么r(AB)=n 吗?

可逆矩阵对应的行列式值一定不为0,要是r(ab)不是n那么行列式ab就等于0了,不可逆,欢迎和我一起讨论.再问:你好,我刚学现代,不太懂,为什么r(AB)不是n,行列式就等于0了啊?再答:行列式的值可

A,B为n阶方阵,A的行列式不为零,证明AB与BA相似

A的行列式不为零说明A可逆所以A^(-1)*AB*A=BA即AB与BA相似

方阵性质证明问题设AB为n阶方阵,证明|AB|=|A||B|

我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们

设A、B为任意n阶方阵,且BA=A+B,则AB=

BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB

方阵|AB|=|BA|成立吗?A,B为n阶方阵.

不一定成立举反例就行了