可达矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/03 22:48:21
可达矩阵
矩阵可对角化的充分必要条件是什么?

n阶矩阵可对角化的充分必要条件是有n个线性无关的特征向量.此题A的特征值为1,1,-1要求特征值为1时,对应的特征值矩阵的秩要等于2,(代数重数与几何重数相等)再问:是不是这样的:A-E=[-2,-2

可对角化的矩阵通常都有哪些?

1.所有特征根都不相等,那么不用说,绝对可以对角化2.有等根,只需要等根(也就是重特征值)对应的那几个特征向量是线性无关的,那么也可以对角化,如果不是,那么就不能了.

下列矩阵中哪些矩阵可对角化?并对可对角化得矩阵A,求一个可逆矩阵P,使P^-1AP成对角矩阵

|A-λE|=(2-λ)(3-λ)^2.所以A的特征值为2,3,3(A-2E)X=0的基础解系为a1=(1,0,0)'.(A-3E)X=0的基础解系为a2=(0,1,0)',a3=(-2,0,1)'.

线性代数 特征值 特征向量 矩阵可相似对角化

不是等价的A=300030001A可对角化,A的特征值是3,3,1再问:但是应为根据定义有单根的特征值必有相应的特征向量,而属于不同特征值的特征向量是线性无关的,所以A有n个不同的特征值也就能知道A有

实对称矩阵,矩阵函数,可微函数,特征值,证明.

如果给一个对称矩阵,那么它的特征值都是实数,而且它的特征向量相互正交.这个定理的相关证明你可以参考任何一本线性代数的教科书.这个定理中的一个结论是证明这个命题的关键.如果这个对称阵的所有元素都是可微函

用java声明一个矩阵类(matrix);至少可实现矩阵的转置;矩阵的加减

不想打击你,不过一个普通的丝毫不懂编程的初中生也可以在几天内达到完成这种难度的题目的水平.你实在太懒了.

关于矩阵可相似对角化的题

|xE-A|=(x-6)(x-1)(x-1).因此E-A的秩为1,即-1,0,-1;-3.0.-x;-4,0,-4;的秩为1,得到x=3

如果矩阵A可逆,则A可对角化.对不对

对的人家说不对的原因是:矩阵A存在相似对角阵的充要条件是:如果A是n阶方阵,它必须有n个线性无关的特征向量.至于如何看A是否存在相似矩阵,只须求出其特征值和特征向量即可看出,公式为AX=λX,其中X为

如何判断一个矩阵是否可对角化?

将矩阵A的特征多项式完全分解,求出A的特征值及其重数若k重特征值都有k个线性无关的特征向量,则A可对角化.否则不能角化.实对称矩阵总可对角化,且可正交对角化.

矩阵可对角化的条件是什么

以下将内容局部复制下来,详见原网址.定理1阶矩阵可对角化的充分必要条件是有个线性无关的特征向量.若阶矩阵定理2矩阵的属于不同特征值的特征向量是线性无关的.推论1若阶矩阵有个互不相同的特征值,则可对角化

任意一个矩阵都可经过有限次初等变换化为行最简形矩阵,那零矩阵算什么?

对的.零矩阵本身就是最简再问:啊?为什么啊?零矩阵,不是标准形吗?不好意思,愚钝了再答:为什么标准型矩阵不能是行最简矩阵呢?你想一下零矩阵还能进行化简吗?再问:不能,可是行最简矩阵是可以化成标准型的啊

矩阵可对角化条件?

n阶方阵A可对角化A有n个线性无关的特征向量k重特征值有k个线性无关的特征向量

关于矩阵可对角化的问题

可以,这时A的极小多项式是P(x)的因子而P(x)无重根,故A可对角化

下列矩阵中哪些矩阵可对角化?并对可对角化得矩阵A,求一个可逆矩阵P,使P^-1AP成对角矩阵.

|A-λE|=1-λ-1-222-λ-2-2-11-λc1+c3-1-λ-1-202-λ-2-1-λ-11-λr3-r1-1-λ-1-202-λ-2003-λ=(-1-λ)(2-λ)(3-λ).所以A

矩阵计算的理论依据是什么?为什么矩阵的加、乘可以这样算?为什么矩阵可分块计算?

矩阵是对矢量的操作,可以看做对n维空间上的点的操作,相加是对一个矢量各自操作后再将操作后的矢量求和;相乘是将矢量操作一次后再操作一次给出的矢量.将空间分成子空间后,操作就变成这些子空间的操作了.对于乘

可对角化矩阵一定可逆吗?

不一定,因为如果A的特征值中有一个或有几个为0时,很显然只要A的特征值的几何重数与代数重数一样的话,那么一定可相似对角化,而对角元素即为对应的特征值,此时A的行列式为0(A的行列式为其所有特征值的乘积

矩阵可做chomsky分解的条件

你想说的是cholesky分解吧?实对称正定矩阵

已知矩阵A可对角化,证明A的伴随矩阵也可对角化

证明:矩阵A可对角化,则存在可逆阵P,使P^(-1)AP=N为对角阵,P*[P^(-1)AP]*P^(-1)=PNP^(-1)A=PNP^(-1),A可逆,则A^(-1)=[PNP^(-1)]^(-1

关于矩阵可相似对角化的

要注意到一个特征值的线性无关特征向量的个数