一个平板小车置于光滑水平面上其右端恰好和一个四分之一圆滑轨道AB的底端等高

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/01 19:55:34
一个平板小车置于光滑水平面上其右端恰好和一个四分之一圆滑轨道AB的底端等高
如图所示,质量 M 为4kg的平板小车静止在光滑的水平面上,小车左端放一质量为lkg的木块, 车的右端固定一个轻质弹簧

(1)2m/s;(2)2J;(3)20J(1)由题意水平地面光滑,可知小车和木块组成的系统在水平方向动量守恒,当弹簧被压缩到最短时,二者速度相等,设木块获得的初速度为v0,由动量定理得l=mv0&nb

如图所示,质量M为4kg的平板小车静止在光滑的水平面上,小车左端放一质量为lkg的木块,车的右端固定一个轻质弹簧.现在瞬

(1)木块与小车组成的系统动量守恒,以小车的初速度方向为正方向,当弹簧被压缩到最短时,木块和小车速度相等,由动量守恒定律得:mv0=(M+m)v,代入数据解得:v=2m/s;(2)木块与弹簧碰后相对小

右端带有光滑圆弧轨道质量为M的小车静置于光滑水平面上,以下说法正确的是

问题一平抛相对于底面.题中没有特殊强调的时候,都是以地面为参考系.问题二小球从小车的最高点飞出时在水平方向和小车具有相同的速度Vx,小球离开车后做斜抛运动,水平速度Vx不变,小车做速度为Vx的匀速直线

光滑水平面上静止着一辆长度为10m质量为M=1kg的平板小车,小车的左端放有一个质量为m=1kg的小物块,给小物块一个初

根据动量守恒:MV=(M+m)V’V=2V’=10m/s根据动动能定理:mguS=1/2mV^2一1/2(M+m)V’^21*10*10*u=1/2*1*10*10-1/2*2*5*5u=0.25

如图所示,一个上表面绝缘、质量为mA=1kg的不带电小车A置于光滑的水平面上,其左端放置一质量为mB=0.5kg、带电量

(1)对物块C由O→M→N应用动能定理,设C运动到N点速度大小为v0得:WF-μ1mcg(2s1+s2)=12mcv02解得:v0=2WFmc−2μ1g(2s1+s2)=4m/sC与空盒B右壁相碰,动

质量为M的平板小车C静止在光滑的水平面上

AB选项对.分析:在车表面光滑时,车不受摩擦力,仍保持静止.因为A和B的质量相等,且V1>V2,所以它们碰撞后,B物体的碰后速度方向必是向右,所以最终它要从车的右端滑出.---选项B对.又如果A和B物

关于动量守恒的!如图所示,一个m=2kg的物体,以水平速度V0=5m/s滑上静止在光滑水平面上的平板小车,小车的质量M=

1:当二者相对静止时,物体在小车滑行距离最长.此时二者速度相等设为v1则mv0=(m+M)v1得v1=1m/s2:物体受到的摩擦力f=umg,设加速度为a则ma=umg,v0-at=v1得t=(v0-

如图所示,一个m=2kg的物体,以水平速度V0=5m/s滑上静止在光滑水平面上的平板小车,小车的质量M=8kg,物体

1物体在小车滑行距离最长时,小车木块的速度相同根据动量定理mVo=(m+M)VV=mVo/(m+M)2物体在小车上滑行过程中受到动摩擦力f=-μmg加速度a=-μg滑行t时间后,相对小车静止t=(v-

(2014•达州模拟)如图所示,一平板小车静置于光滑水平面上,其右端恰好和一个固定的14光滑圆弧轨道AB的底端等高对接.

(1)滑块从A端下滑到B端,由机械能守恒得mgR=12mv20得v0=2gR=3m/s在B点,由牛顿第二定律得FN-mg=mv20R解得轨道对滑块的支持力FN=3mg=30N由牛顿第三定律可知,滑块对

一平板小车放在光滑水平面上,求详解释第二问?

AB滑上小车后,AB给小车的摩擦力都是μmg且方向相反,所以小车受力平衡,保持静止.A受摩擦力减速,加速度是μmg=ma,a=μg.A的滑行时间是2v/μg.B的滑行时间是v/μg.即在t=v/μg后

如图所示,在光滑水平面上有一辆质量M=8kg的平板小车,车上有一个质量m=1.9kg的木块,木块距小车左端6m(木块可视

设子弹射入木块后的共同速度为v1,以水平向左为正,则由动量守恒有:m0v0-mv=(m+m0)v1…①代入数据解得:v1=8m/s它们恰好不从小车上掉下来,则它们相对平板车滑行s=6 m时它

.如图所示,在光滑水平面上有一小车A,其质量为mA=2.0kg,小车上放一个物体 B,其质

甲中,不发生相对滑动时,AB有共同加速度a=F/(mA+mB)=1m/s^2.此时B受摩擦力向左,F-f=mBa=1,则f=2N,这是AB的最大静摩擦力.乙中,要AB不相对滑动,即AB有共同的速度和加

在光滑的水平面上原来停放着一辆质量为M 1 =2kg的平板小车甲,它的平板是光滑的,其右端放着一个质量为m=1kg的物块

(1)通过碰撞最后P相对乙静止,即达到共同速度v3,由动量守恒定律得:   M2v0=M1v1+(M2+m)v3v3=M2v0-M1v1M2+m=4×5-2×64+1m/

一个平板小车置于光滑水平面上,其右端恰好和一个14光滑圆弧轨道AB的底端等高对接,如图所示.已知小车质量M=3.0kg,

(1)A到B过程,由动能定理:mgR=12mvB2---①在B点:N-mg=mv2BR---②联立①②两式并代入数据得:vB=4m/s,N=30N有牛顿第三定律得物块对轨道的压力为15N.(2)对物块

(2013•日照二模)一个平板小车置于光滑水平面上,其右端恰好和一个轨道半径R=0.8m的14光滑圆弧轨道AB的底端等高

(1)滑块从A端下滑到B端,由机械能守恒定律得:mgR=12mv20解得:v0=2gR=2×10×0.8=4m/s   在B点由牛顿第二定律得:FN-mg=mv20R,解

如图所示,在光滑水平面上有一辆质量M="8" kg的平板小车,车上有一个质量m=1.9 kg的木块,木块距小车左端6m(

设子弹射入木块后的共同速度为v1,以水平向左为正,则由动量守恒有:m0v0-mv=(m+m0)v1 ……①----------(2分)v1="8"m/s   &

如图所示,劲度系数为K的弹簧一端与墙体固定,另一端与倾斜角为a的斜面体小车连接,小车置于光滑水平面上,在小车上叠放一个物

1、因为物体与车之间始终没有相对滑动,所以把他们看作一个整体,加速度始终相同,但拉到B时,系统所受外力为F=kb,加速度a=kb/(M+m),小物块此时加速度为a,所以受合外力为mkb/(M+m),方