设矩阵的秩为r,中任意一个r阶子式不等于零

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/16 17:56:14
设矩阵的秩为r,中任意一个r阶子式不等于零
7.设矩阵A的秩为r,则A中( C )

这个把定理的意思搞清楚就行了.定理:r(A)=r的充分必要条件是:至少有一个r阶子式不等于0,且所有r+1阶子式全为0.理解定理后,看看选择(这里只需必要条件)A.不符.但能推出r(A)>=r-1B.

设矩阵A的秩为r>1,则其任何r-1阶子式均非零

错.1001的秩为2,但右上角的元素构成一个1阶子式显然为0

设n阶实对称矩阵A的秩为r(r

可以用Gauss消去法证明可以合同对角化,然后只要加一句可逆变换不改变秩即可.如果还不会看下面的提示:取一个非零2阶主子式,若其对角元为0则用[1,1;-1,1]作用上去,这样它至少一个对角元非零.不

设A为阶对称正定矩阵,给出一个算法求上三角形矩阵R,使A=R*R的转置,我怎么做都只能证明A=R的转置*R

令F=[e_n,...,e_1],也就是把单位阵的列反过来排那么A=RR^TFAF=(FRF)(FR^TF)再问:单位阵的列反过来还是原来的单位阵啊能不能把过程再说得详细些呀再答:F=00101010

求解线性代数证明题!设mXn矩阵A的秩为r,证明当r

一点不麻烦吧...对齐次方程组AX=0因为r(A)=

证明任意一个秩为r的的矩阵A可以表示为r个秩为1的矩阵之和,而不能表示为r-1个秩为1的矩阵之和.

我来替刘老师回答吧对于A=PDQ^T,其中D=diag{d_1,d_2,...,d_n}把P和Q按列分块成P=[p_1,p_2,...,p_n],Q=[q_1,q_2,...,q_n],那么用分块矩阵

设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )

∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变

线性代数求矩阵的秩设ABC为三个N阶矩阵,且|AB|不等于0,判断 结论R(ABC)=?R(A) ,R(ABC)=?R(

我来分析一下:|AB|≠0,即AB可逆,(把AB做为整体)这样R(ABC)=R(C)或R(CAB)=R(C)其他的都不确定 见公式里的第四条

判断题:若矩阵A的秩为r,则A中任意r+1阶子式都为0.

这是对的知识点:1.若A中有非零的r阶子式,则r(A)>=r2.若A的所有r+1阶子式都为0,则r(A)

问个线性代数题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×r矩阵B与秩为r的r×n矩阵C使A=BC

这个叫做矩阵的满秩分解,《矩阵论》上的定理.证明:A是m×n矩阵,R(A)=r,则A一定能通过初等行列变换变成如下矩阵100...00010...00001...00...000...00就是左上角是

设N*M阶矩阵A的秩为R,证明:存在秩为R的N*R阶矩阵P及秩为R的R*M阶矩阵Q,使A=PQ

取可逆阵X和Y使得A=X*diag{I_R,0}*Y然后P取成X的前R列,Q取成Y的前R列就行了再问:大神,本人愚钝,表示完全看不懂啊,可以说的详细一点吗。。再答:如果第一行不懂就去看教材,这是基本结

设A是一个秩为r的s×n矩阵,证明存在一个秩为n-r的n×(n-r)的矩阵C,使AC=0

见下图:再问:AX=0.A后面的是X吗!?还有怎么C的秩就成了n-r了呢!不明觉厉!表示我高代很差,还劳烦大神讲解下再问:AX=0.A后面的是X吗!?还有怎么C的秩就成了n-r了呢!不明觉厉!表示我高

设A为mxn矩阵,秩r(A)=r,则以下结论中一定正确的为?

(B)正确.此时A行满秩,A再添加一列b后秩仍然是m即有r(A)=r(A,b)故AX=b有解.再问:不好意思再问下,A和D选项错误的原因是?再答:(A)r(A)=n并不能保证r(A,B)=n方程组可能

判断题:若矩阵A的秩为r,矩阵A中任意r阶子式不等于0

错误.如:123401340000秩为2.但2阶子式3434等于0.满意请采纳^_^.

设A为m×n矩阵,C是n阶可逆矩阵,A的秩为r1,B=AC的秩为r,则( ) A.r>r1 B.r=r1 C.r

注意到AC的行列数与A相同,故A右乘C实际上就是对A进行初等列变换,故r=r1

矩阵乘积的秩设A,B为n阶矩阵,证明:r(AB)+n≥r(A)+r(B)备用符号≥≤><≠

考察I00AB利用初等变换I00ABI-B0ABI-BA0再由秩的定义容易说明它的秩不小于0-BA0的秩即可.

设A为r*r阶矩阵,B为r*n阶矩阵且R(B)=r,证明:

1)由AB=0,得R(A)+R(B)《r.又R(B)=r,故R(A)《0.显然R(A)》0.故R(A)=0既A=02)如果AB=B,则AB-B=0.即(A-E)B=0,R(B)+R(A-E)《r.又R

(ii) 设A,B为n阶方阵,r(AB)=r(B),证明对于任意可以相乘的矩阵C均有r(ABC)=r(BC).

证明:分两步(1)ABX=0与BX=0同解显然,BX=0的解都是ABX=0的解所以BX=0的基础解系可由ABX=0的基础解系线性表示.由已知r(B)=r(AB)所以两个基础解系所含向量个数相同故两个基