设f(x)z在(a,b)内连续,a小于x1 证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/11 11:51:59
设f(x)z在(a,b)内连续,a小于x1 证明
证明设f(x)在有限开区间(a,b)内连续,且f(a+) ,f(b-)存在,则f(x)在(a,b)上一致连续.

令g(x)=f(x)x∈(a,b)g(x)=f(a+)x=ag(x)=f(b-)x=b显然g(x)在[a,b]内连续,所以一致连续.当然在(a,b)连续.g(x)在(a,b)正好为f(x)

设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)

F'(x)=【f(x)(x-a)-∫(a,x)f(t)dt】/(x-a)^2=【f(x)(x-a)-f(t0)(x-a)】/(x-a)^2=【f(x)-f(t0)】/(x-a)

设f(x)在(a,b)内连续,且limx->a+f(x)=+无穷,limx->b-f(x)=-无穷,证明f(x)在(a,

因imx->a+f(x)=+无穷,故存在点c>a,使f(c)>0.又limx->b-f(x)=-无穷,故存在d(c

高数题:1 设f(x)在[a,b]内连续 x1,x2属于(a,b),x1

1(μ1f(x1)+μ2f(x2))/(μ1+μ2)在f(x1)和f(x2)之间,由介值性定理,在[x1,x2]内至少存在一点ζ,使(μ1f(x1)+μ2f(x2))/(μ1+μ2)=f(ζ)2.用和

设f(x)在(a,b)内连续可导f'(x)

再问:为什么f(x)-f(t)

设函数f(x)在(a,b)内连续,则必有().

CA.比如f(x)=tan(x)在(-pi/2,pi/2)内连续,但是f(x)无界B.同上,f(x)=tan(x)无最大值,也无最小值D.如果是分段函数,该条不成立,比如函数f(x)=100,x=1;

设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.证明:在(a,b)内至少存在一点c,使f'(

设g(x)=f(x)e^(dx),由题意得g(x)在(a,b)上可导,[a,b]内连续,又g(a)=f(a)e^(da)=0g(b)=f(b)e^(da)=0即g(a)=g(b)对g(x)在[a,b]

设f(x)在[a,b]上连续,在[a,b]内可导,且f(a)=f(b)=0.试证在(a,b)内至少存在一点ζ,f'(ζ)

F(x)=f(x)/x^2,G(x)=f(x)e^(-x^2)G(a)=G(b)=0G'(x)=e^(x^2)(f'(x)-2xf(x))罗尔定理G'(ζ)=0即f'(ζ)-2ζf(ζ)=0

设f在(x-1,x+1)内单调,则f在x处 A,可导B,连续C,不可导D,左右极限存在

显然,A、B、C都不对所以选D再答:��ʮ���ѧ���飬רҵֵ��������������Ͽ��ҵĻش

高数证明单调性设函数f(x)在区间[a,b]上连续,在(a,b)内f''(x)>0,证明:φ(x)=[f(x)-f(a)

φ'(x)=[(x-a)f'(x)-(f(x)-f(a))]/(x-a)^2,由Lagrange中值定理,存在ξ∈(a,x),使得f(x)-f(a)=f'(ξ)(x-a),所以φ'(x)=[(x-a)

设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则曲线y=f(x)在(a,b)内平行于x轴的

求出f(x)在(a,b)上的极大值和极小值,如果极值不等于零,则那些极值所对应的平行于x轴的直线就是题目所求切线,如果极值为零,则这条为零的切线不符合题意(因为它就是x轴).

证明:设f(x)在[a,b]上连续,在(a,b)内可导,则(a,b)内至少存在一点c,使f(c)+cf'(c)=[bf(

∵f(x)在[a,b]上连续,在(a,b)内可导∴xf(x)在[a,b]上连续,在(a,b)内可导再用拉格朗日中值定理∴则(a,b)内至少存在一点c,使f(c)+cf'(c)=[bf(b)-af(a)

设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)>0,f(a)f[(a+b)/2]0,f(a)f[(a

因为f(a)、f(b)同号,f(a)与f[(a+b)/2]异号则根据连续函数介值定理在(a,(a+b)/2)中至少存在一点M,在((a+b)/2,b)中至少存在一点N,使得f(M)=f(N)=0根据罗

设函数f(x)在[a,b ]上连续,且f(a)〈a ,f(b)〉b ,证明:方程f(x)=x 在(a,b )内至少有一实

作辅助函数F(x)=f(x)-x,显然在[a,b]上连续,则F(a)=f(a)-a,因为f(a)〈a,所以f(a)-ab,所以f(b)-b>0即F(a)F(b)

设f(x)在【a,b】上连续,在(a,b)内f''(x)>0,证明:

求出F’(x),只要F’(x)>0,则得到F(x)在(a,b】上是单调增加的求得F’(x)=[f’(x)*(x-a)-f(x)+f(a)]/(x-a)^2,则F’(x)的符号由分子决定令分子是G(x)

设f(x)在[a,b]上连续,a

证明:令k=[pf(c)+qf(d)]/(p+q)无妨设f(c)≤f(d),由于q是正数,所以qf(c)≤qf(d)pf(c)+qf(c)≤pf(c)+qf(d)(p+q)f(c)≤pf(c)+qf(

设f(x)在[a,b]上连续,在(a,b)内f(x)可导且f(x)≠0,f(b)=f(a)=0.试证对任意的实数α,存在

令F(x)=e^(kx)f(x),在[a,b]上用罗尔定理可以证出f'(§)+kf(§)=0.原题就是这样的?