若级数满足 limun u2n-1 u2n收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/02 14:47:08
若级数满足 limun u2n-1 u2n收敛
若级数∑an收敛,其部分和∑Sn,判断级数∑(1/Sn)的敛散性

设∑an收敛到SS,n->∞∴1/Sn->1/S≠0,∴∑(1/Sn)发散

级数根号下(2n+1)/n的@次方收敛的充要条件是@满足不等式?

@满足不等式@>3/2因为根号下(2n+1)/根号下n的极限是根号2,也就是说他们是同阶的,原级数收敛等效于级数1/n^(@-1/2)收敛因为级数1/n^p当p>1时收敛,所以有@>3/2

若级数∑(n=1)un收敛,级数∑(n=1)vn发散,试证明级数∑(n=1)(un+vn)发散,求详细解答,谢谢

反证法:若级数(un+vn)收敛,则级数(vn)=级数(un+vn-un)=级数(un+vn)-级数(un)收敛.矛盾.

若级数∑[n=1,∞]Vn收敛,则级数∑[n=1,∞]1/Vn发散 依据的原理是什么?

如级数vn收敛,则vn->0,而1/vn->无穷,所以,级数1/vn不可能收敛

若级数an发散,级数(an+bn)收敛则级数bn为什么是发散的?

如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.

证明级数的收敛若级数an(n从1到无穷)收敛,数列bn收敛,证明级数anbn(n从1到无穷)收敛,提示说用柯西收敛准则,

这题明显少条件,如果bn是单调的就可以了.否则结论不成立.反例:an=(-1)^n/n^(1/2),级数an收敛.bn=(-1)^n/n^(1/2),数列bn收敛于0,但级数anbn=级数1/n是发散

证明若级数∑un满足(1)limun=0,(2)∑(u2n-1+u2n)收敛,则∑un收敛

参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

证明级数绝对收敛若级数∑an绝对收敛,且an≠-1(n=1,2,…),证明:级数∑an/(1+an)收敛.

证明:∑an绝对收敛,∴an->0,那么存在N>0,使得n>N时,有|an|1+an>1/2=>1/(1+an)|an|/(1+an)∑|an/(1+an)|∑an/(1+an)收敛

若级数Un收敛于s 则级数(un+un+1)收敛于

由   ∑(n>=1)u(n)=s,可得   ∑(n>=1)[u(n)+u(n+1)]  =∑(n>=1)u(n)+∑(n>=1)u(n+1)  =2s-u(1).再问:(Un+Un+1)=(u1+u

若级数∑Un收敛于S,级数∑【un+un+1】则收敛于

∑【un+un+1】收敛于2s-u1再问:怎么做的呢?解释下理由好吗?谢谢再答:∑【un+un+1】=∑(n从1到∞)un+∑(n从1到∞)un+1=s+∑(n从1到∞)un+1(后面相当于从u2开始

判断级数的敛散性,若级数收敛,求和

1)该级数发散.∵(2n-1)/(2n)当n趋于无穷时等于1.2)该级数收敛.当n趋于无穷时,(1/2)^n、(1/3)^n都趋于0,原式=1/2+(1/2)²+(1/2)³+……

若级数an(x-1)^n在x=0处收敛则级数在x=2de的收敛性 若级数an^2(x-1)^n在x=-1处收敛则级数在x

收敛根据定义,|an|=|(-1)^nan|再问:Yimoxilong是什么?再答:无穷小反写的3看下书上的定义

若Un的级数收敛,则1/Un的级数是收敛还是发散

是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.

满足两个条件在用1级数据分别乘个数怎么用公式计算出了

H3=IF(F3="自制",LOOKUP(9E+307,$G$2:G2)*D3,"")下拉再问:LOOKUP(9E+307,$G$2:G2)*D3这是什么意思再答:几句话解释不清楚,=LOOKUP(9

高数级数问题如果级数∑ln(1+(-1)^n/n^p) (p>0)条件收敛,则p满足答案好像是1/2

关于无穷乘积有一个重要的判别法:已知sum(a_n)收敛,那么prod(1+a_n)收敛的充要条件是sum(a_n^2)收敛.p>1/2就是这里来的.

有关级数收敛若级数∑an收敛,为什么级数∑an + a(n+1)也收敛?而∑a(2n-1) - a(2n)不一定收敛?

例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+

计算级数 1/n^4

用傅里叶级数展开.得到答案pi^4/90见参考资料