系数行列式不等于0 线性无关

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/13 02:46:29
系数行列式不等于0 线性无关
行列式等于零的充要条件是它的行向量组线性无关

设A的列向量组为a1,a2,...,an矩阵A的行列式|A|=0AX=0有非零解存在不全为0的一组数x1,x2,...,xn使得x1a1+x2a2+...+xnan=0a1,a2,...,an线性相关

齐次线性方程组只有零解,能说明该系数行列式D不等于0吗?

可以的只要系数组成的矩阵是一个方阵,那么系数行列式的值不为0

非齐次线性方程组有三个线性无关的解,系数矩阵的秩为什么为2

题目条件不足!3个线性无关的解设为a1,a2,a3则a1-a2,a1-a3是Ax=0的线性无关的解所以n-r(A)>=2所以r(A)再问:题目中给了一个四元方程组,让证明矩阵系数的秩为2再答:由上面知

克拉默法则说:"若线性方程组的系数行列式不等于零,那么方程组有唯一解."还有一个定理说:"如果齐次线性方程组的系数行列式

这两种说法并不矛盾.“如果齐次线性方程组的系数行列式不等于零,则它没有非零解”,就是说,它的解也是唯一的,这个“唯一的解”是零解.比如Ax=b,若b≠0,则为“非齐次线性方程组”,当│A│≠0时,有唯

怎样证明非齐次线性方程组(系数矩阵秩=0)解向量与特解构成的向量组线性无关,

应该是:非齐次线性方程组的特解与其导出组的基础解系构成的向量组线性无关设β是非齐次线性方程组AX=b的特解,α1,...,αs是AX=0的线性无关的解若kβ+k1α1+...+ksαs=0等式两边左乘

如果线性方程组的系数行列式不等于零,则这个线性方程组一定有解,且解唯一.

如果一个线性方程组无解或者存在不唯一的解,则这个线性方程组的线性行列式等于零._____A∩B=A∪B既后一个的否命题原型.

为什么增广矩阵的秩等于系数矩阵的秩,所以后者的极大线性无关组是前者的极大线性无关组?

设系数矩阵A=(a1,a2,...,an)则增广矩阵(A,b)=(a1,a2,...,an,b)再设ai1,...,air是A的列向量组a1,a2,...,an的一个极大无关组.由已知r(A)=r(A

线性方程组的通解 齐次线性方程组的系数矩阵A(n阶方阵)的行列式值为0,Aij不等于零,证明:

证明:因为|A|=0所以AA*=|A|E=0所以A*的列向量都是AX=0的解.又因为|A|=0所以r(A)=1,所以r(A)>=n-1所以r(A)=n-1.所以AX=0的基础解系含n-r(A)=1个解

克莱姆法则/克拉默法则是充要的吗?即由n*n线性方程组有唯一解是否可以推出系数行列式不等于0?如何证明?

这个问题要换个思路记A=(a1,a2,...,an)则Ax=b有唯一解b可由a1,a2,...,an唯一线性表示由此可得a1,a2,...,an线性无关进而行列式|a1,a2,...,an|=|A|≠

行列式不等于0可以怎么证明?

若a1,a2,...,ak线性无关,则对任意的x1,x2,...,xk不全为0,有c=x1a1+x2a2+...+xkak不为0,于是(cc)>0,打开可以看出就是x^TGx>0,其中G是Gram矩阵

线性无关等价于gram行列式不等于0?怎么证明?

若a1,a2,...,ak线性无关,则对任意的x1,x2,...,xk不全为0,有c=x1a1+x2a2+...+xkak不为0,于是(cc)>0,打开可以看出就是x^TGx>0,其中G是Gram矩阵

为什么行列式等于0向量就线性相关?

行列式|A|=0时齐次线性方程组AX=0有非零解非齐次线性方程组AX=b才是有无数个解或无解

线性代数证明题 设a为Ax=0的非零解,b为Ax=b(b不等于0)的解,证明a与b线性无关

证明:设r1,r2为任意非零常数.则由题意可知:A(r1a)=0;A(r2b)=r2B;所以A(r1a-r2b)=r2B所以A(r1a-r2b)不可能等于0如果a,b线性相关,则必然存在r1a-r2b

证明:若n维向量a1不等于0,a2不能由a1线性表示,a3不能由a1,a2线性表示,则a1,a2,a3线性无关.

证明:设有k1,k2,k3使:k1a1+k2a2+k3a3=0因a3不能由a1,a2线性表示,k3=0,故k1a1+k2a2=0因a2不能由a1线性表示,k2=0,故k1a1=0因a1不等于0,所以:

齐次线性方程组的系数行列式|A|=0,A为n*n的矩阵,而A中某元素代数余子式不等于0.写不开了.见补充

证:因为|A|=0,所以r(A)=n-1.故r(A)=n-1.所以齐次线性方程组AX=0的基础解系含n-r(A)=1个解向量.所以AX=0的任一个非零解都是它的基础解系.因为AA*=|A|E=0.所以

线性代数证明线性无关

直接用定义证明c_0ξ+c_1σ(ξ)+...+c_{m-1}σ^{m-1}(ξ)=0(*)对(*)两边作用V^{m-1}得c_0=0对(*)两边作用V^{m-2}得c_1=0...

线性代数,行列式等于零或不等于零,跟线性相关和线性无关有什么关系

齐次线性方程AX=0(1)可以看做关于A(m*n)的列向量a1,a2,……,an的方程ajxj=0(j=1,2,……,n)(2)列向量aj=(a1j,a2j,……,amj)^T(1)和(2)是同解方程

为什么证明线性无关只要其对应的行列式不等于0

不等于0,说明齐次线性方程组只有零解,说明只有全为零的数才能使得他们的线性组合等于0,因此线性无关

n个n维向量线性无关 则行列式不等于0 为什么?

n个n维向量线性无关,说明这n个n维向量的秩为n(n个极大线性无关组)既然满秩,那就意味着对应行列式为0!